Article 2 # 1'2022

© Oleksandr Vrublevskyi, Doctor of Technical Science, Professor of Department of Vehicle and Machinery Construction and Operation, Faculty of Technical Sciences, ORCID: 0000-0002-5871-6381, e-mail: aleksander.wroblewski@uwm.edu.pl;
© Jarosław Gonera, PhD, Associate Professor, Assistant Professor (dr inż.) of Department of Vehicle and Machinery Construction and Operation, Faculty of Technical Sciences, ORCID: 0000-0001-7758-2684, e-mail: jaroslaw.gonera@uwm.edu.pl
University of Warmia and Mazury in Olsztyn (Poland)
© Andriy Prokhorenko, Doctor of Technical Science, Professor, Head of the Department of Internal Combustion Engines, ORCID: 0000-0003-1325-4176, e-mail: ap.kharkiv@ukr.net;
© Anatoliy Kuzmenko, Сandidate of Technical Science, Associate Professor, Associate Professor of the Department of Internal Combustion Engines, ORCID: 0000-0002-4029-4010, e-mail: kuzmatolja@gmail.com
Kharkiv National Automobile and Highway University (Ukraine)

Мethod of diagnosis of modern tractor diesels of agricultural purpose
DOI: 10.33868/0365-8392-2022-1-269-14-24

Abstract. The paper presents new the latest method of diagnostics of a diesel engine of an agricultural tractor based on the analysis of data on changes in efficiency and parameters that characterize the process of formation of fuel-air mixture generated by the engine controller. The technique was tested using an original test cycle, during which several engine defects were physically simulated, which led to changes in the conditions and quality of the processes of formation and combustion of the fuel-air mixture. The paper substantiates the choice of operating modes and a set of engine parameters that provide the greatest information and allow you to effectively identify possible damage. The developed technique and the obtained results allow to determine the technical condition of the engine directly in the operating conditions, both for vehicles with a driver and for unmanned vehicles.
Keywords: diagnostics, internal combustion engine, damage, fuel consumption, efficiency, test cycle.

References
1. Grytsyuk O., & Vrublevskyi O. (2018). Investig -tions of diesel engine in the road test. Diagnostyka. 19 (2), 89–94. https://doi.org/10.29354/diag/90279
2. Dyer J., & Desjardins R. (2006). Carbon Dioxide Emissions Associated with the Manufacturing of Tractors and Farm Machinery in Canada. Biosystems Engineering 93(1), 107-118. http://doi.org/10.1016/j.biosystemseng.2005.09.011
3. Reif K. (Ed.) (2015) Automotive Mechatronics: Automotive Networking, Driving Stability Systems. Springer Vieweg,. X, 538 p. http://doi.org/10.1007/978-3-658-03975-2
4. Rovira Más, F., Zhang, Q., & Hansen, A. C. (2011). Mechatronics and Intelligent Systems for Off-road Vehicles. Springer. 277 p. https://doi.org/10.1007/978-1-84996-468-5
5. Carrera González A, Alonso García S, & Gómez Gil J., (2010) Design, Development and Implemementa-tion of a Steering Controller Box for an Automatic Agricultural Tractor Guidance System, Using Fuzzy Logic, Technological Developments in Education and Automation.
Carrera‐González, A., S. Alonso‐García, and J. Gómez‐Gil. 2010.
Design, development and implementación of a steering
controller box for and automatic agricultural tractor guidance
system, using fuzzy logic. In Tecnological Developments in
Education and Automation, 153‐158. M. Iskander et al., eds.
Netherlands: Springer.
Carrera‐González, A., S. Alonso‐García, and J. Gómez‐Gil. 2010.
Design, development and implementación of a steering
controller box for and automatic agricultural tractor guidance
system, using fuzzy logic. In Tecnological Developments in
Education and Automation, 153‐158. M. Iskander et al., eds.
Netherlands: Springer.
6. Naji, A.A. (2013). A comparison of measured diesel emissions in agriculture and Australian National Standard Emission Factors.
7. Vrublevskyi O. (2019). Modelling of processes in electro-hydraulic valves of an engine’ fuel system. Mechanika 25 (2). 141–148. https://doi.org/10.5755/j01.mech.25.2.22015
8. Michalski R., Gonera J. and Janulin, M. (2014): A Simulation Model of Damage-Induced Changes in the Fuel Consumption of a Wheeled Tractor. Eksploatacja Niezawodnosc Maintenance and Reliability,16(3): 452–457.
9. Knefel T., & Nowakowski J. (2020). Model-based analysis of injection process parameters in a common rail fuel supply system. Eksploatacja i Niezawodność – Maintenance and Reliability 22 (1). 94–101. http://doi.org/10.17531/ein.2020.1.11
10. Bieniek, Andrzej. (2013). Wewnątrzsilnikowe ograniczenie emisji substancji szkodliwych w silniku wyposażonym w układ egr pojazdu pozadrogowego. Inzynieria Rolnicza. 2. 31-41.
11. Napiórkowski,J. & Gonera,J.(2020).Analysis of Failures and Reliability Model of Farm Tractors. Ag-ricultural Engineering,24(2) 89-101. https://doi.org/10.1515/agriceng-2020-0020.
12. Dou Danan. (2012). Application of Diesel Oxidation Catalyst and Diesel Particulate Filter for Diesel Engine Powered Non-Road Machines. Platinum Metals Review. 56. 144-154. https://doi.org/10.1595/147106712X645466
13. Nuthall K (2003). Tractor comparisons. Farm Industry News,January 2003
14. Rymaniak Ł.. Lijewski P.. Kamińska M.. Fuć P.. Kurc B.. Siedlecki M.. Kalociński T.. Jagielski A. (2020). The role of real power output from farm tractor engines in determining their environmental performance in actual operating conditions. Computers and Electronics in Agriculture. 173(31):105405. http://doi.org/10.1016/j.compag.2020.105405
15. Alvarez I., & Huet S. (2008). Automatic diagnosis of engine of agricultural tractors: The BED experiment. Biosystems Engineering 100(3). 362–369. https://doi.org/10.1016/j.biosystemseng.2008.04.003
16. Grisso R., & Pitman R. (2001). Gear Up and Throttle Down-Saving Fuel. Virginia Cooperative Extension, Virginia Tech . 442–450.
17. Alvarez I, Bertrand J-J, & Me´chineau D (1993). Automated diagnosisof engines of agricultural tractors. Proceedings of the Inter-national Conference on Artificial Intelligence for Agricultureand Food, pp 137–144, Nıˆmes, France
18. Heywood J.B. (1998 ) Internal Combustion Engine Fundamentals. 2nd ed. New York: McGraw-Hill Education. Retrieved from https://www.accessengineeringlibrary.com/content/book/9781260116106
19. Gosala D.B.. Allen C.M.. Ramesh A.K.. Shaver G.M.. McCarthy J.. Stretch D.. Farrell L. (2017). Cylinder deactivation during dynamic diesel engine operation. International Journal of Engine Research 18(10). 991–1004. https://doi.org/10.1177%2F1468087417694000
20. Yang J., Quan L., & Yang Y. (2012). Excavator Energy-saving Efficiency Based on Diesel Engine Cylinder Deactivation Technology. Chinese Journal of Mechanical Engineering. 25 (5). http://doi.org/10.3901/CJME.2012.05.897