Article 3 # 1 2021

DOI: 10.33868/0365-8392-2021-1-265-22-30
© Roman Symonenko, PhD, Associate Professor, e-mail: rsymonenko@insat.org.ua, ORCID: 0000-0002-4269-5707 (SE «State Road Transport Research Institute»)

EVALUATION OF DEVELOPMENT LEVEL THE TELEMATIC HARDWARE AND SOFTWARE FOR “VEHICLES – INFRASTRUCTURE” SYSTEM

Abstract. The article is devoted to the study of the actual scientific and technical problem of improving the vehicles operation efficiency under specific infrastructural operating conditions. The structure of the «Vehicles – Infrastructure» system is generalized using a systems approach. In particular, it is presented in the form of a functional scheme. This scheme combines the main processes of the system in propulsion, transmission, chassis and interaction with the infrastructure, processes input values and outputs, feedbacks, providing control of process parameters to achieve the desired system performance. A systematization method of telematic hardware and software the «Vehicles – Infrastructure» system is proposed. The method allows to analyze existing morphological structures and form new morphological structures of the system. They are considered as ways to increase operational efficiency of vehicles with improved telematic hardware and software of basic functional elements. A method for determining the telematic hardware and software development level of the «Vehicles – Infrastructure» system and its functional elements is proposed. The method takes into account the implementation variants development level of vehicles and infrastructure telematic hardware and software basic morphological features. The morphological structures of the «Vehicles – Infrastructure» system telematic hardware and software for research are determined. These morphological structures combine the different development level variants of 16 morphological features for the «Vehicles» and «Infrastructure» functional elements.
Keywords: vehicles, infrastructural operating conditions, functioning process, functional scheme, morphological matrix, morphological structure, telematic hardware and software development level.

References
1. Kravchenko O. P. (2007). Naukovi osnovy upravlinnya efektyvnistyu ekspluatatsiyi avtomobil’nykh poyizdiv : dys. … dokt. tekhn. nauk : 05.22.20 – Ekspluatatsiya ta remont zasobiv transportu. [Scientific bases of management of efficiency of operation of automobile trains]. Kharkiv, 480.
2. Myhal’ V. D. (2018). Intelektual’ni systemy v tekhnichniy ekspluatatsiyi avtomobiliv : monohrafiya [Intelligent systems in a technical production car: a monograph]. Kharkiv, Maydan, 262.
3. Lysyy O. V. (2016). Pidvyshchennya efektyvnosti ekspluatatsiyi avtomobil’nykh poyizdiv shlyakhom upravlinnya yikh tekhnichnym stanom : avtoref. dys. … kand. tekhn. nauk : 05.22.20 – Ekspluatatsiya ta remont zasobiv transportu. [Improving the efficiency of operation of road trains by managing their technical condition]. Kharkiv, 20.
4. Flah, A, Mahmoudi, C. (2019). Design and analysis of a novel power management approach, applied on a connected vehicle as V2V, V2B/I, and V2N. Int J Energy Res, 43 6869– 6889. https://doi.org/10.1002/er.4701
5. Dey, K.C., Rayamajhi, A., Chowdhury, M., Bhavsar, P., Martin, J. (2016). Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless network – Performance evaluation. Transportation Research Part C: Emerging Technologies 68, 168–184.. doi:10.1016/j.trc.2016.03.008
6. Farah, H., Koutsopoulos, H. N., Saifuzzaman, M., Kölbl, R., Fuchs, S., & Bankosegger, D. (2012). Evaluation of the effect of cooperative infrastructure-to-vehicle systems on driver behavior. Transportation Research Part C: Emerging Technologies, 21(1), 42–56. doi:10.1016/j.trc.2011.08.006
7. Volkov V.P., Hrytsuk I.V., Symonenko R.V., Hrytsuk Yu.V., Volkov Yu.V. (2017). Osoblyvosti struktury i vzayemoz”yazku funktsional’nykh mozhlyvostey bortovoho informatsiynoho kompleksu dlya zabezpechennya informatsiynoho obminu mizh elementamy ITs transportnoho zasobu. [Features of the structure and application of the “language of functionality of the onboard information complex to ensure the use of information between the elements of the vehicle IT”]. Visnyk NTU, 3 39, 21–31.
8. Gritsuk, I., Volkov, V., Mateichyk, V., Grytsuk, Y. et al. (2018). Information Model of V2I System of the Vehicle Technical Condition Remote Monitoring and Control in Operation Conditions, SAE Technical Paper 2018-01-0024. https://doi.org/10.4271/2018-01-0024.
9. Gritsuk, I., Zenkin E.Y., E., Bulgakov, N., Golovan, A. et al. (2018).The Complex Application of Monitoring and Express Diagnosing for Searching Failures on Common Rail System Units, SAE Technical Paper 2018-01-1773. https://doi.org/10.4271/2018-01-1773.
10. Hrytsuk I. V., Mateychyk V. P., Symonenko R. V., Khudyakov I. V. (2019). Osoblyvosti dystantsiynoyi identyfikatsiyi rezhymiv roboty vodiya v informatsiyniy systemi monitorynhu transportnoho zasobu. [Systemy i środki transportu samochodowego. Wybrane zagadnienia. Efektywność i bezpieczeństwo]. Transport, Rzeszow, 7-15.
11. Mateichyk, V., M. Saga, M. Smieszek, M. Tsiuman, N. Goridko, I. Gritsuk, and R. Symonenko. (April 2, 2020). Information and Analytical System to Monitor Operating Processes and Environmental Performance of Vehicle Propulsion Systems. IOP Conference Series: Materials Science and Engineering 776: 012064. doi:10.1088/1757-899x/776/1/012064.
12. Gritsuk, Igor, Dmytro Pohorletskyi, Vasyl Mateichyk, Roman Symonenko, Mykola Tsiuman, Mykyta Volodarets, Nickolay Bulgakov, et al. (September 15, 2020). Improving the Processes of Thermal Preparation of an Automobile Engine with Petrol and Gas Supply Systems (Vehicle Engine with Petrol and LPG Supplying Systems). SAE Technical Paper Series. doi:10.4271/2020-01-2031.
13. M. F. Dmytrychenko & the other. (2014). Metody systemnoho analizu vlastyvostey avtomobil’noyi tekhniky. [Methods of system analysis of properties of automobile equipment]. Kyiv, National Transport University, 163.
14. V. P. Volkov & the other. (2015). Intelektual’ni systemy monitorynhu transport. [Intelligent transport monitoring systems]. Kharkiv, NTMT, 244.
15. M. F. Dmytrychenko & the other. (2016). Prohramne zabezpechennya system monitorynhu transport. [Software for transport monitoring systems]. Kyiv, National Transport University, 202.
16. Kakinami, Toshiaki, Mitsuyoshi Saiki, and Jun Sato. (1993). Vehicle cruise control system. U.S. Patent No. 5, 230, 400.
17. Hennessee, Robert P., Steven C. Huetteman, and Ron M. Markowitz. (August 20, 1996). Vehicle climate control system and operating method. U.S. Patent No. 5, 547, 125.