Article 2 # 1 2021

DOI: 10.33868/0365-8392-2021-1-265-12-21
© Nataliiа Borodina, Doctor of Technical Science (D.Sc.), Senior Researcher, professor of department of technologies of study, labor protection and design, e-mail:, ORCID: 0000-0002-5942-5658 (Bilotserkivsky Institute of Continuous Professional Education);
© Serhii Cheberiachko, Doctor of Technical Science (D.Sc.), Professor, Professor of the Department of Labour Protection and Civil Safety, e-mail:, ORCID: 0000-0003-3281-7157;
© Oleg Deryugin, Candidate of Technical Science (PhD), Associate Professor, Associate Professor of the Department of Transportation Management, e-mail:, ORCID: 0000-0002-2456-7664
© OlenaTretyak, Candidate of Technical Science (PhD), Associate Professor, Associate Professor of the Department of Transportation Management, e-mail:, ORCID: 0000-0002-7542-9392
(Dnipro University of Technology)

Abstract. Hand-held power tools are an integral part of any manufacturing process. Modern power tools are characterized by operational, consumer, ergonomic and safety properties. These properties characterize its effective adaptability to the relevant production process. But it should also be noted that not taking into account the ergonomic properties: noise load, vibration, tool weight, heating temperature of the working surface of the tool, etc. causes very serious consequences for the deterioration of the health of the employee who uses it. This is especially true for occupational diseases of the circulatory system, nervous system, diseases of the bone and vascular tissue.
Object of the study – development of a fast-effective method for assessing the ergonomic risk of hand-held power tools when performing a specific production task
Purpose of the study – ergonomic risk when working with hand tools when performing the appropriate technological process.
Method of the study – the research method is based on observations and studies of specific phenomena of the process under consideration, as well as the generalization of the results of experimental research and their implementation in practice.
Results of the study – the most influential criteria that affect employee productivity when working with hand tools are identified: integrated design ergonomics, load, tool weight, jerk load, tool surface heating temperature, vibration, noise, dust particles during tool operation. For each criterion the corresponding estimation of ergonomic risk taking into account influence on a physical, psychological condition of the worker is proved. A checklist has been developed to determine the level of ergonomic risk according to eight criteria.
Keywords: hand power tools, ergonomic risk, indicator, harmful factors, occupational diseases, checklist.

1. Germann, R., Jahnke, B., Matthiesen, S. (2019). Objective usability evaluation of drywall screwdriver under consideration of the user experience. Applied ergonomics, 75, 170-177. DOI: 10.1016/j.apergo.2018.10.001.
2. Sauer, J., Seibel, K., Rüttinger, B. (2010) The influence of user expertise and prototype fidelity in usability tests. Applied ergonomics, 41, 130-140. DOI: 10.1016/j.apergo.2009.06.003.
3. Matthiesen, S., Mangold, S., Germann, R. et al. (2018). Hand-arm models for supporting the early validation process within the product development of single impulse operating power tools. Forsch Ingenieurwes, 82, 119-129. DOI: 10.1007/s10010-018-0265-1.
4. Schenk, K.D., Vitalari, N.P., Davis, K.S. (1998). Differences between Novice and Expert Systems Analysts: What Do We Know and What Do We Do? Journal of Management Information Systems, 15(1), 9-50. DOI: 10.1080/07421222.1998.11518195.
5. Bogner, A., Littig, B., Menz, W. (2014). Interviews mit Experten: Eine praxisorientierte Einführung (Qualitative Sozialforschung) [Interviews with Experts: A practice-oriented introduction (Qualitative Social Research)]. Publishing: Springer VS, 112 pages. ISBN: 978-3-531-19416-5. In German.
6. Chandra, A., Pankaj, C. (2011). Ergonomic design of hand tool (screwdriver) for indian worker using comfort predictors: a case study. International Journal of Advanced Engineering Technology, 2(4), 231-238. E-ISSN 0976-3945.
7. Hreljac, A. (2000). Stride smoothness evaluation of runners and other athletes. Mathematics, Medicine, 3, 199-206. DOI: 10.1016/S0966-6362(00)00045-X.
8. Ganzevles, S.P.M., Beek, P.J., Daanen, H.A.M., Coolen, B.M.A., Truijens, M.J. (2019). Differences in swimming smoothness between elite and non-elite swimmers. Sports biomechanics, 1-14. DOI:10.1080/14763141.2019.1650102.
9. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y. (2017). “Realtime multi-person 2d pose estimation using part affinity fields,” in CVPR. Available from:
10. Cellier, J.M., Eyrolle, H., Marine C. (1997). Expertise in dynamic environments. Ergonomics, 40(1), 28-50. DOI: 10.1080/001401397188350.
11. Radwin, R.G. (1996). An Ergonomics Guide To Hand Tools. Publisher: American Industrial Hygiene Association, 45 pages. ISBN0932627757.
12. Dababneh, A., Lowe, B.D, Krieg, E., Kong, Y.-K., Waters, T. (2005). A check-list for the ergonomic evaluation of nonpowered hand tools. Journal of Occupational and Environmental Hygiene, 1(12), 135-45. DOI: 10.1080/15459620490883150.
13. Apte, M., Claudon, L., Marsot, J. (2002). Integration of Ergonomics Into Hand Tool Design: Principle and Presentation of an Example. International journal of occupational safety and ergonomics, 8(1), 107-115. DOI: 10.1080/10803548.2002.11076518.
14. Meena, M.L., Dangayach, G.S. (2015). An Ergonomic Approach to Design Hand Tool for Screen Textile Printing. International Journal of Recent advances in Mechanical Engineering, 4(2), 120-128. DOI: 10.14810/ijmech.2015.4207.
15. Lindqvist, B., Skogsberg, L. (2007). Power tool ergonomics. Evaluation of power tools. Publisher: Atlas Copco, 172 pages. ISBN: 978-91-631-9900-4.
16. Borodina, N.А., Cheberyachko, S.І., Deryugin, О.V. (2020). Erhonomichnyy analiz ruchnoho instrumentu dlya umov avtoservisu. Metod doslidzhennya. Chastyna 1 [Ergonomic analysis of hand tools for car service conditions. method of the study. Part 1]. Scientific and Industrial Journal the Avtoshliakhovyk Ukrayiny, 3, 7-12. DOI: 10.33868/0365-8392-2020-3-263-7-12. In Ukrainian.
17. Chowdury, M.L.R. (2014). Study and analysis of work postures of workers working in a ceramic industry through rapid upper limb assessment (Rula). International Journal of Engineering and Applied Sciences, 5(3), 14-20. SSN2305-8269.
18. Luskin, B.J. Industrial Ergonomics: Prevent Injury from Hand and Power Tool Use. SpineUniverse. 2017. – Available from:
19. Chaffin, D.B., Andersson, G.B.J., Martin, B.J. (2006). Occupational biomechanics, 4th Edition. Publishing: J. Wiley & Sons, Inc., New York. Eastman Kodak Company. 376 pages. ISBN: 978-0-471-72343-1.
20. Bobjer, O., Johansson, S., Piguet, S. (1993). Friction between hand and handle. Effects of oil and lard on textured and non-textured surfaces; perception of discomfort. Applied ergonomics, 24(3), 190-202. DOI: 10.1016/0003-6870(93)90007-V.
21. Bobjer, O., Johansson, S., Piguet S. (1993). Friction between hand and handle, Effects of oil and lard on textured and untextured surfaces. Applied Ergonomics, 24, 190-202. DOI:10.1016/0003-6870(93)90007-V.
22. Björkstn, M., Jonsson, B. (1977). Endurance limit of force in long-term intermittent static contractions. Scandinavian Journal of Work, Environment & Health, 3(1), 23-27. DOI:10.5271/sjweh.2795.

23. Byström, S.E.G., Kilbom, A. (1991). Physiological response in the forearm during and after isometric intermittent handgrip. European Journal of Applied Physiology and Occupational Physiology, 60(6), 457-66. DOI: 10.1007/BF00705037.
24. Standard ISO 6544 «Hand-held pneumatic assembly tools for installing threaded fasteners – Reaction torque and torque impulse measurements». Available from:
25. Standard ISO 5349-1:2001 «Mechanical vibration. Measurement and evaluation of human exposure to hand-transmitted vibration. Part 1: General requirements. Available from:
26. Standard DSTU ISO 8662-11:2004. «Instrumenty ruchni perenosni pryvodni. Vymiryuvannya vibratsiyi na rukoyattsi. Chastyna II. Instrumenty dlya vstanovlennya kripylʹnykh detaley» [Hand tools, portable, drive. Vibration measurement on the handle. Part II. Tools for installing fasteners]. Available from:ДСТУ_ISO_8662-11_2004. In Ukrainian.
27. Standard DSTU EN ISO 5349-2:2005 «Vibratsiya mekhanichna. Vymiryuvannya ta otsinyuvannya vplyvu na lyudynu lokalʹnoyi vibratsiyi. Chastyna 2. Praktychna nastanova z vymiryuvannya na robochomu mistsi (EN ISO 5349-2:2001, IDT)» [Mechanical vibration. Measurement and evaluation of local human vibration. Part 2. Practical guidelines for workplace measurements (EN ISO 5349-2: 2001, IDT)]. Available from: In Ukrainian.
28. Dyrektyva № 98/79/ES Rady Yevropeysʹkoho Soyuzu i Yevropeysʹkoho Parlamentu pro medychni prylady dlya diahnostyky in vitro [Directive № 98/79 / EC of the Council of the European Union and of the European Parliament on in vitro diagnostic medical devices]. Available from: In Ukrainian.
29. Standard CEN/TR 15350:2006. «Mechanical vibration – Guideline for the assessment of exposure to hand-transmitted vibration using available information including that provided by manufacturers of machinery». Available from:
30. Standard DSTU ISO 15744:2018 «Instrumenty ruchni z neelektrychnym pryvodom. Metodyka vymiryuvannya shumu. Tekhnichnyy metod (klas tochnosti 2)» [Hand tools with non-electric drive. Method of noise measurement. Technical method (accuracy class 2)]. Available from: In Ukrainian.
31. Standard DSTU EN 60745-1:2014 «Instrument ruchnyy elektromekhanichnyy. Vymohy shchodo bezpeky. Chastyna 1. Zahalʹni vymohy» [The tool is manual electromechanical. Security requirements. Part 1. General requirements]. Available from: In Ukrainian.
32. Lee, T-H. Han, C.-S. (2013). Analysis of working postures at a construction site using the OWAS method. International Journal of Occupational Safety and Ergonomics, 19(2), 245-250. DOI: 10.1080/10803548.2013.11076983.