Article 4 # 2’2020

DOI: 10.33868/0365-8392-2020-2-262-21-28
© Mykhailo Hrubel, Candidate of Technical Science, Associate Professor, e-mail: m.g.grybel@gmail.com, ORCID: 0000-0002-4820-6935 (Hetman Petro Sahaidachny National Army Academy);
© Lybomyr Krainyk, Doctor of Technical Science, Professor, e-mail: l.kraynyk@gmail.com, ORCID: 0000-0002-0524-9126;
© Vitalii Khoma, student, e-mail: homa.v@hotmail.com, ORCID: 0000-0002-9900-855X
(Lviv Polytechnic National University)

SIMULATION MODELLING OF WHEELED MILITARY AUTOMOTIVE EQUIPMENT MOVEMENT IN OFF-ROAD CONDITIONS AND ASSESSMENT OF ITS ADEQUACY

Abstract. A method for assessing vehicle mobility and performance of wheeled MAE samples in off-road conditions based on MATLAB Simulink simulation tools has been developed. This method is based on a basic mathematical model in accordance with empirical dependencies, which have been worked out over the last 15-20 years by the “Eastern” School of Terramechanics. It was also used the WES (Waterways Experiment Station) practical methods for assessing the bearing capacity of the movement supporting surface (soil, sand, etc.), based on a standardized measurement of the deformation resistance of a specified supporting surface by a conical penetrometer, called CI (the Cone Index). Taking this method into consideration, the calculation of technically possible maximum velocity of movement Vmax of a particular wheeled MAE model on a given supporting surface with certain physical and mechanical deformation characteristics was performed. Its adequacy is confirmed by the convergence of the results obtained from modeling and experimental studies. The obtained results can serve as a basis for determining the parameters of wheeled MAE and updating the normative base for vehicle mobility and performance.
It should be noted that there are significant tangible differences in the quantitative assessment of the maximum speeds of wheeled MAE along different supporting surfaces on the empirical dependencies of the “Eastern” and “Western” Scientific Schools, which is confirmed by experimental studies. The obtained results can serve as a basis for determining the parameters of wheeled MAE and updating he normative base for vehicle mobility and performance.
Keywords: simulation model of movement, wheeled MAE, off-road, maximum possible speed of movement.

References
1. Bezborodova, G. B., Galushko V. G. (1978). Modelirovaniye dvizheniya avtomobilya [Modeling the movement of the car]. Kyiv, Vysshaya shkola, 163.
2. Kosharnyy, N. F. (1981). Tekhniko-ekspluatotsionnyye svoystva avtomobiley vysokoy prokhodimosti [Technical and operational properties of cross-country vehicles]. Kyiv, Vyshcha shkola, 208.
3. Ageykin Ya.S. (1981). Prohodimost avtomobiley [Patency of cars]. Moscow, Mashinostroenie, 230.
4. Krainyk, L. V., Hrubel, M. H. (2010). Bahatofaktorna otsinka ta normuvannia palyvnoi ekonomichnosti vantazhnykh avtomobiliv [Multifactor evaluation and rationing of fuel efficiency of trucks]. Lviv, ASV, 117.
5. Hrubel, M. H., Krainyk, L. V., Bodnar, M. F. (2019). Otsinka tiahovo-shvydkisnykh kharakterystyk viiskovoi avtomobilnoi tekhniky za umov rukhu bezdorizhzhiam metodamy imitatsiinoho modeliuvannia [Estimation of traction-speed characteristics of military motor vehicles under off-road conditions by simulation methods]. Кyiv, Ozbroiennia ta viiskova tekhnika., 46-53.
6. Hrubel, M. H., Krainyk, L. V., Kuprinenko, O. M. (2019). Metodolohiia otsinky opornoi prokhidnosti kolisnoi viiskovoi avtomobilnoi tekhniky [Methodology for assessing wheelbase support of military military vehicles]. Кyiv, Ozbroiennia ta viiskova tekhnika., 12-22.
7. Wong, Y. J. (1993). [Theory of ground vehicle London]. London – NewYork, Mc-GrawHill Booh Comp., 423.
8. GOST RV 52048-2003. (2003). Avtomobili mnogotselevogo naznacheniya. Parametryi prohodimosti i metodyi ih opredeleniya. [Multipurpose cars. Passability parameters and methods for their determination]. Moscow.
9. GOST V 26442–85. (1986). Avtomobili mnogotselevogo naznacheniya. Parametryi prohodimosti i metodyi ih opredeleniya. [Multipurpose cars. Passability parameters and methods for their determination]. Moscow.
10. Lessem, A., Mason, G., Ahlvin, R. (1996). [Stochastic vehicle mobility forecasts using the NRMM]. Journal of Terramechanics, 33(6), 273-280.
11. Freitag D.R. (1965). [A dimensional analysis of the performance of the pneumatic tires soft soil]. US Army Waterways Experimental Station. Report, 3-688, 1965.
12. He, R., Sandu, C., Khan, A. R., Gutherie, A. G., Els, P. S. & Hammersma, H. A. (2019.) [Review of terramechanics models and their applicability to real-time applications]. Journal of terramechanics, 81(2), 3-22.
13. Hahina, A. M. (2017). (Metodyi prognozirovaniya i povyisheniya prohodimosti kolesnyih lesnyih mashin) [Methods for predicting and improving the patency of wheeled forest machines]. Sankt-Peterburg, Dis. d.t.n. SPU, 332.
14. Larin, V. V. (2013). (Analiz zavisimostey deformiruemosti opornoy poverhnosti. Vertikalnaya deformatsiya). [Analysis of the deformability of the support surface. Vertical deformation]. Мoscow, Vestnik MGTU im. N.E. Baumana, 1-11. Retrieved from https: www://engjournal.ru/articles.pdf.
15. Maclaurin, B. (2018). [High Speed Off-Road Vehicles: Suspensions, Tracks, Wheels and Dynamics]. London, Wiley, 249. Retrieved from https: www.wiley.com/en-ua/High+Speed+Off+Road+Vehicles:+Suspensions,+Tracks,+Wheels+and+Dynamics-p-9781119258810.
16. Lutz, J. (2003). [Mobility of ground vehicles. US military view a overview primer and reference source quide]. Quent systems Inc., 101.
17. Larminiе, J. C. (1992). [Modifications to the mean maximum pressure system]. Journal of Terramechanics, 29(2),239-255. Retrieved from https: www.sciencedirect.com/science/ article/abs/pii/002248989290029J/.
18. Hrubel, M. H., Ftemov, Yu. O., Khoma, V. V. (2019). Eksperymentalni doslidzhennia parametriv prokhidnosti zrazkiv kolisnoi viiskovoi avtomobilnoi tekhniky. [Experimental studies of the patency parameters of samples of wheeled military vehicles]. Kharkiv, Systemy ozbroiennia i viiskova tekhnika, 4(60), 7-15.
19. Ostretsov, A. V, Esakov, A. E., Sharipov, V. M. (2014). Sravnitelnaya otsenka opornoy prohodimosti avtomobiley KamAZ-4350, KamAZ-43114 i Ural-4320-31 na syipuchem peske. [Comparative assessment of the support patency of KAMAZ-4350, KAMAZ-43114 and Ural-4320-31 vehicles on loose sand]. Izvestiya MGTU MAMI, 1(19), 50-51.