© Taras Kraynyk, Chef-Designer
ORCID: 0009-0003-7530-6194
e-mail: taras.kraynyk@gmail.com
(JSC «Ukrautobusprom»);
© Mykhaylo Manziak, Postgraduale
ORCID: 0000-0002-5634-9231,
e-mail: mishael1780@ukr.net
(Hetman Petro Sahaidachnyi National Army Academy)
EXPERIMENTAL EVALUATION OF CAR SUSPENSION EFFICIENCY
IN OFF-ROAD CONDITIONS
DOI: 10.33868/0365-8392-2025-1-282-35-43
Abstract. This paper presents a scientifically grounded methodology for evaluating the vibration impact and ride comfort of wheeled military vehicles under off-road operating conditions. The study focuses on the influence of suspension parameters and structural layout on the transmission of vibrations to the vehicle crew, particularly the driver. Two commonly used light tactical vehicles were selected for comparative experimental investigation: the LTV02 “Mamai” with a modern independent suspension system, and the UAZ-3151, equipped with a traditional dependent suspension. Experimental tests were conducted using standardized speed-reducing obstacles, paved surfaces, and sections of deformed terrain resembling real operational environments.
The methodology includes both direct measurement of vibration acceleration levels transmitted to the driver’s seat and spectral analysis of the obtained signals in accordance with ISO 2631-1. The experimental setup incorporated accelerometers installed on the seat base and vehicle chassis, with subsequent analysis performed using MATLAB-based algorithms. Particular emphasis was placed on assessing the critical speeds at which suspension bottoming occurs—serving as a practical criterion for determining suspension performance under dynamic impact conditions.
The study highlights the significance of implementing long-travel independent suspensions (with stroke amplitudes increased by a factor of 1.7–2.4), as seen in modern NATO-standard vehicles such as those utilizing Timoney or Oshkosh TAK-4 systems. The “Mamai” vehicle demonstrated substantially reduced levels of vertical vibration and extended permissible travel speeds, while the UAZ-3151 showed high levels of vibration exposure even at moderate speeds. The research underlines the importance of updating national technical regulations for military vehicle suspensions to align with modern combat requirements and to improve crew endurance, vehicle survivability, and mission effectiveness in off-road conditions.
Keywords: military vehicles, suspension effectiveness, vibration exposure, experimental testing, spectral analysis, off-road dynamics, ride quality, tactical mobility.
References
1. Trollius M. (2002). Povedinka transmisiyi kolisnykh pidvisok dlya lehkovykh avtomobiliv u chastotnomu diapazoni, shcho vidpovidaye komfortu. [Transmission behavior of wheel suspensions for passenger cars in the frequency range corresponding to comfort.]. Stuttgart: Schaber-Verlag. 326. [in Germany].
2. State Standard of Ukraine DSTU ISO 2631-1:2004. Vibration and shock are mechanical. Assessment of the impact of general vibration on a person. Part 1. General requirements. (ISO 2631-1:1997, IDT) [Valid from 2004-11-30]. Kyiv: Derzhspozhivstandard of Ukraine, 2004. 34. [in Ukrainian].
3. State sanitary standards of Ukraine. (2000). 3.3.6.039 – 99. Derzhavni sanitarni normy vyrobnychoyi zahalʹnoyi ta lokalʹnoyi vibratsiyi (31680). [3.3.6.039 – 99. State sanitary norms of industrial general and local vibration (31680)]. Ministry of Health of Ukraine, Kyiv, 35. [in Ukrainian].
4. Brigantic R. & Mahahn J. (2004), Oboronnyy transport: alhorytmy, modeli ta zastosuvannya dlya 21-ho stolittya” [Defence Transportation: Algorithms, Models and Applikation for the 21st Century]. 1st Edition. Elsevier Science, 392. ISBN 9780080913858. Retrieved from https://www.elsevier.com/books/defense-transportation-algorithms-models-and-applications-for-the-21st-century/brigantic/978-0-08-044405-5 (Acessed 5.11.2024) [in USA].
5. Grubel M. G., Kraynyk L. V. & Andrienko A. M. (2020). Osnovy formuvannya natsionalʹnoyi normatyvnoyi bazy shchodo prokhidnosti kolisnoyi viyskovoyi avtomobilnoyi tekhniky. [Basics of the formation of the national regulatory framework regarding the passability of wheeled military automobile equipment]. Armament systems and military equipment. Kharkiv: KhNUPS named after Iv. Kozheduba. 2, 62, 7-17. Retrieved from https://doi.org/10.30748/soivt.2020.62.01 [in Ukrainian].
6. Lessem A., Mason G. & Ahlvin R. (1996). Stokhastychni prohnozy mobilnosti transportnykh zasobiv z vykorystannyam etalonnoyi modeli mobilnosti NATO. [Stohastics vehicle mobility forecasts using the NATO reference mobility model]. Journal of Terramechanics, 1, 273 – 280. Retrieved from https://doi.org/10.1016/S0022-4898(97)00010-4 [in USA].
7. Defence Standard. (1992). DEF STAN 23-6. Posibnyk iz zahalʹnykh tekhnichnykh vymoh do viysʹkovoyi tekhniky ta rushnykovoyi tekhniky. [DEF STAN 23-6. Guide to the Common Technical Requirements for Military Vehicles and Towel Equipment]. MODUK. Re-trieved from https://www.standards.globalspec.com/std/244958/def-stan-23-6. [in England].
8. Manzyak M.O., Kraynyk L.V. & Grubel M.G. (2021). Tendentsiyi rozvytku konstruktsiy pidvisky viyskovykh avtomobiliv. [Trends in the development of military vehicle suspension designs]. Weapon systems and military equipment, Kharkiv, KhNUPS, 65, 27 – 34. Retrieved from https://doi.org/10.30748/soivt.2021.65.04 [in Ukrainian].
9. Manzyak, M. O., Homa, V. V., Grubel, M. G., Kraynyk, L. V. and Salo, Ya. (2023). Otsinka efektyvnosti pidvisky povnopryvidnoho avtomobilya dlya bezdorizhzhya. [Evaluation of the effectiveness of the suspension of a four-wheel drive car for off-road use], Magazine “Bulletin of the Lviv National University of Nature Management. Agricultural engineering research. 27, 295–307. Retrieved from https://doi.org/10.31734/ agroengineering2023.27.096 [in Ukrainian].
10. Kraynyk L. V., Bur’yan M. V., Lanets O. V. and Kokhan V. F. (2022). Plavnistʹ rukhu yak osnova komfortnosti avtomobiliv: formuvannya normatyvnoyi bazy “Vehicle road comfort”. [Smoothness of movement as the basis of car comfort: formation of the “Vehicle road comfort” regulatory framework. ], Scientific and industrial magazine “Automobile of Ukraine”, 27, 96-100. Retrieved from https://doi.org/10.33868/0365-8392-2022-3-271-2-7. [in Ukrainian].
11. Dushchenko V.V. (2018). “Systemy pidresoryuvannya viyskovykh husenychnykh i kolisnykh mashyn: rozrakhunok ta syntez” [Suspension systems of military tracked and wheeled vehicles: education manual]. V.V.Dushchenko; end. O. I. Shpilova; National technical University “Kharkiv Polytechnic Institute”.Kharkiv, FOP A. M. Panov, 336. ISBN: 978-617-7771-07-3 [in Ukrainian].
12. Kalchenko B. I., Kozhushko A. P. and Kiselyov A. R. (2017). Otsinka plavnosti rukhu samokhidnoyi mashyny pry vplyvi nerivnostey poverkhni. [Evaluation of the smoothness of the movement of a self-propelled machine under the influence of surface irregularities.]. Bulletin of NTU “KhPI”, 30, 1252, 56-63. [in Ukrainian].
13. Kaidalov R. O., Bashtovy V. M., Larin O. O. and Vodka O. O. (2015). Eksperymentalʹne otsinyuvannya plavnosti khodu spetsializovanoho transportnoho zasobu z neliniynym pidresoryuvannyam pry rusi po bezdorizhzhyu. [Experimental evaluation of the smoothness of a specialized vehicle with a non-linear suspension when driving off-road.]. Collection of scientific papers of the National Academy of NSU. 2, 26, 27-31. [in Ukrainian].
14. BS 6841. (1987). Guide to measurement and evalution of human exposure to wheel body mechanical vibration and supeated shok. The British Standardinstitution. Londоn. 30. [in England].
15. State Standard of Ukraine. (2020). 4123:2020 Bezpeka dorozhnʹoho rukhu. Zasoby zaspokoyennya pukhu. Zahalʹni tekhnichni vymohy. [4123:2020 Road traffic safety. Means of calming fluff. General technical requirements.]. [Effective from 2020-11-01]. Kyiv. State enterprise “Ukrainian research and training center for problems of standardization, certification and quality”, 21. [in Ukrainian].
16. Kalinovsky A.Ya. and others. (2016). Eksperymentalʹni doslidzhennya vertykalʹnykh kolyvanʹ spetsializovanoho transportnoho zasobu z neliniynym pidresoryuvannyam pry pereyizdi odynychnoyi nerivnosti. [Experimental studies of vertical oscillations of a specialized vehicle with nonlinear suspension when traveling over a single bump.]. Bulletin of NTU “KhPI”, topic. issue “Dynamics and strength of machines”, 58, 1100, 31-39. [in Ukrainian].
17. Kraynyk T. L., Hudz G. S. (2008). Strukturnyy syntez ta kinematyka sumishchennya kermovoho pryvodu i nezalezhnoyi pidvisky avtomobilya. [Structural synthesis and kinematics of the combination of the steering drive and the independent suspension of the car]. Herald of the Khnadu. Kharkiv, 41, 62-64 [in Ukrainian].
18. Kraynyk T. L., Hudz G. S. (2016). Optymizatsiya sumishchennya kinematyky kermovoho pryvodu ta perednʹoyi pidvisky avtomobilya metodamy komp’yuternoho 3D – syntezu. [Optimization of the combination of kinematics of the steering drive and the front suspension of the car by the methods of computer 3D – synthesis.]. Modern technologies in mechanical engineering and transport. LNTU Lutsk, 2, 6, 101-104. [in Ukrainian].
